• info@resistancetraining.it

Archivio mensilefebbraio 2015

ESERCIZI PER GLI ARTI INFERIORI: CONFRONTI PRATICI

Dott. Giorgio Trotta

L’ideazione di un buon  programma  allenante  parte  da una scelta accurata degli esercizi  in considerazione dei  bisogni reali del soggetto.

La scelta deve  basarsi sull’obiettivo che il  soggetto si prefigge  e sui muscoli che intende maggiormente stimolare (target). Un  esercizio non attiva un “solo” muscolo ma una catena motoria dove il muscolo target  ne è parte. Quindi l’esercizio, la sua esecuzione e gestione  devono essere il più possibile specifici ai bisogni del soggetto.

La Specificità (Specificity) o principio del SAID (Specific Adaptions to Imposed Demands  –  Adattamento Specifico alla Domanda Imposta) è un principio fondamentale dell’attività sportiva secondo cui gli adattamenti indotti dall’esercizio sono specifici dell’allenamento fisico svolto. Stone ed altri (4) hanno evidenziato come la scelta di un esercizio  determini  l’entità di adattamento che si verifica a seguito di uno specifico programma allenante.

Nella teoria dell’esercizio con i pesi  il principio di specificità rappresenta uno dei tre principi fondamentali unitamente alla periodizzazione e al sovraccarico progressivo.

Per una più facile comprensione dell’azione delle forze sul corpo e le inerenti funzioni muscolo-scheletriche  interessate si ritiene opportuno  rappresentare l’azione dello sforzo muscolare  tramite una linea (linea  resistente LR). Le distanza tra  LR  e le posizioni delle articolazioni  maggiormente coinvolte  nell’esercizio  permettono  di appurare l’intensità dei  momenti resistenti che agiscono  e quindi poter valutare lo stress a cui le suddette articolazioni e  relativi muscoli sono sottoposti:  ovviamente la parte muscolare associata  all’ articolazione più lontana dalla LR  sarà maggiormente sollecitata rispetto a quella più vicina.

Negli  esercizi  di piegamento più comuni per gli arti inferiori  il reclutamento muscolare è influenzato da 3  fattori principali:  la profondità raggiunta, il posizionamento del piede (1) ,l’ampiezza e la flessibiltà della caviglia(6).

Nel seguito gli esercizi vengono esaminati con profondità, posizionamento dei piedi ,ampiezza e flessibilità delle caviglie che si raggiungono di norma.

WALL SIT

FIGURA 1:  Le immagini mostrano l’intensità delle azioni sugli estensori delle  ginocchia durante  (A) sit muro e (B) sit parete/ palla di instabilità

FIGURA 1: Le immagini mostrano l’intensità delle azioni sugli estensori delle ginocchia durante (A) wall sit muro e (B)wall sit parete/ palla di instabilità

Il  wall sit è un  esercizio fondamentale per rafforzare gli arti inferiori.  Esso è svolto tenendo la schiena appoggiata al muro durante la posizione di squat ( Fig 1°).  La  LR    è funzione della posizione del centro di  gravità rispetto al  muro e dall’ attrito con la parete che ne limita il movimento.Gli sforzi  maggiori coinvolgono le ginocchia e di conseguenza le forze reagenti sono prodotte  dall’estensore del ginocchio.

 Una variante dell’esercizio che permette una diminuzione  dell’entità delle sollecitazioni  sui quadricipiti è quella dell’ inserimento di una fit ball tra la regione lombare del soggetto e la parete: l’aumento della flessione del busto riduce lo stress   nei quadricipiti (Fig 1B).

LEG PRESS AND  HACK SQUAT

FIGURA 2:  Le immagini mostrano l’intensità delle azioni sugli estensori delle ginocchia durante la leg press sdraiata (A) e l’hack squat (C), e l’ intensità delle azioni sugli estensori  dell’ anca  durante la leg press (B) in relazione alla pendenza

FIGURA 2: Le immagini mostrano l’intensità delle azioni sugli estensori delle ginocchia durante la leg press sdraiata (A) e l’hack squat (C), e l’ intensità delle azioni sugli estensori dell’ anca durante la leg press (B) in relazione alla pendenza

Alcuni esercizi  di leg press sono utilizzati per rafforzare la muscolatura dell’anca e delle ginocchia attraverso l’elevato lavoro muscolare a cui esse sono sottoposte. La gamma dei movimenti  varia in relazione ai valori assunti dagli angoli della piattaforma rispetto al busto, come mostrato dalle figure  della  leg press e hack squat machine (Fig 2). Si noti che le posizioni simili della leg press sdraiata (Fig 2A) e dell’hanck squat (Fig 2C) determinano una maggiore intensità di azione sui quadricipiti.

La LR  prodotta nella posizione  profonda della leg press inclinata (Fig 2B), la mancanza di attrito sulla pedana e  l’ altezza dei piedi determinano  forze perpendicolari  alla piattaforma con la conseguenza  di  uno sforzo  maggiore per   gli estensori dell’anca. Quindi se l’obiettivo è quello di rafforzare esclusivamente gli estensori delle ginocchia la  scelta  riguarda la leg press disteso o l’ hack squat, mentre la scelta per il rafforzamento degli estensori dell’anca riguarda la leg press inclinata.

SMITH MACHINE

FIGURA 3:  Lo squat alla smith machine permette agli estensori  di anche e ginocchia una equa distribuzione.

FIGURA 3: Lo squat alla smith machine permette agli estensori di anche e ginocchia una equa distribuzione.

Nella Smith machine il posizionamento dei  piedi risulta molto importante.  Alelbeck (1) ha evidenziato che se il tronco rimane eretto sotto il bilanciere mettendo i piedi sotto i fianchi viene intensificato  il lavoro sugli estensori delle ginocchia, mentre quando il posizionamento dei piedi comporta un angolo retto  caviglie/ ginocchia   e  coscia  parallela al pavimento viene intensificato un lavoro maggiore sugli estensori  delle anche.  Il coinvolgimento degli estensori  delle anche e delle ginocchia è il  medesimo fino a quando il tronco rimane verticale come si evince dalla fig3.

Per  simulare lo squat  tradizionale o l’ affondo i piegamenti alla Smith machine possono  essere variati  al fine di interessare maggiormente i quadricipiti o i femorali

BACK SQUAT AND LUNGE

figura 4

figura 4

Lo squat e l’affondo sono esercizi dove è molto importate saper gestire il controllo del corpo  per  il mantenimento dell’equilibrio.  Una volta appresa la corretta esecuzione dell’ esercizio si può prendere in considerazione l’aggiunta  di una resistenza supplementare ( manubri e bilanciere)   facendo attenzione alla posizione del ginocchio che non sia in varismo o valgismo e non permettendo rotazioni varie (più comune nelle donne(5)).Per evitare seri rischi di infortunio Il riconoscimento di una posizione scorretta è fondamentale in quanto  l’attività del tendine del ginocchio è maggiore durante  l’esecuzione dello squat rispetto alla leg press(2) .

Se  sussistano problematiche di instabilità  Youdas e collaboratori(5) suggeriscono di evitare l’affondo e di  eseguire esercizi di potenziamento di squat a muro o squat  a corporeo libero.

Si noti che uno squat parziale (fig 4A) e un affondo (Fig 4B) determinano equivalenti sollecitazioni sui muscoli dei fianchi e sulle ginocchia, mentre lo squat completo (Fig 4C), per  la maggiore profondità, sollecita maggiormente  gli estensori dell’anca.  C’è  da sottolineare che  l’esecuzione dello  squat  necessita del possesso di determinati requisiti articolari  per l’assunzione della posizione corretta(2).

Abelbeck (1) ha più volte evidenziato che l’ obiettivo per specifici gruppi muscolari può essere realizzato variando la profondità dello squat.

CONCLUSIONI

In questo articolo nell’analisi degli esercizi tri-articolari per  gli arti inferiori sono stati presi in considerazione  solo la  LR e il  momento. E’ da evidenziare che  la disposizione della LR varia in relazione alla profondità raggiunta, al posizionamento dei piedi,  alla articolarità della caviglia e alla dimensione degli arti (1) .  Sebbene sia possibile  agire sulla profondità, il posizionamento del piede e la flessione della caviglia, è del tutto impossibile modificare  le dimensioni del corpo. Quando le dimensioni  degli arti  e del tronco sono grandi è grande anche il  momento da applicare e quindi risulta   più impegnativo generare le forze per vincere la resistenza. E’ opportuno, in definitiva, conoscere gli obiettivi e le caratteristiche del soggetto per poter indicare   “il mezzo”  allenante per il raggiungimento dello scopo .

bibliografia 

1Abelbeck KG. Biomechanical model and evaluation of a linear motion squat type exercise. Journal of Strength and Conditioning Research. 16(4):516 – 524.2002.

2 Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR. Biomechanics of the knee during closed kinetic chain and open kinetic chainexercises. Medicine and Science in Sports and Exercise. 30(4):556 – 569. 1998.
3 Hewett TE, Paterno MV, Meyer GD. Strategies for enhancing proprioception and neuromuscular control of the knee. Clinical Orthopaedics. 402(9):76 – 94.2002.
4 Stone MH, Collins D, Plisk S, Haff G, Stone ME. Training principles: evaluation of modes and methods of resistance training. Strength and Conditioning Journal. 22(3):65 – 76. 2000.
5 Youdas JW, Hollman JH, Hitchcock JR, Hoyme GJ, Johnsen JJ. Comparison of hamstring and quadriceps femoris electromyographic activity between men and women during a single-limb squat on both a stable and labile surface. Journal of Strength and Conditioning Research. 21(1):105 – 111. 2007.

6 Trotta g. Depth squat : correlazione tra inclinazione del busto e l’ angolo di piegamento al livello dell’ articolazione  tibio-tarsica. Possibili danni alle strutture .

Allenamento e affaticamento psico-fisico

– Dott. Matteo Picchi

La vita dell’atleta è sicuramente accompagnata da una costante: la fatica.
Allenamento e assidua applicazione di carichi di lavoro (spesso oltre soglia), si traducono in stanchezza, spossatezza, indolenzimento muscolare, insomma: fatica. Inutile dire che i ritmi frenetici della vita, i mille pensieri di svariata natura ed il lento avvicinarsi della rata del mutuo, non sono sicuramente di aiuto e possono effettivamente incidere sul recupero, peggiorando una già  affermata  condizione di stress psicofisico. L’affaticamento protratto può portare a più o meno marcati peggioramenti nella performance  e/o nella condizione, ma quali sono i sistemi più provati dall’allenamento costante? Le fonti dalle quali questo scaturisce sono tendenzialmente due: il sistema metabolico e quello neuromuscolare.

Affaticamento neuromuscolare
Dopo una serie di spinte su piana, magari portata al limite, è facile riconoscere la fonte dei dolori acuti e di quelli  che ci tormenteranno il giorno o i giorni successivi (doloretti dei quali parleremo a brevissimo),  in quanto è sicuramente il muscolo quello che più di tutti si lamenta del carico di lavoro imposto, ma al povero sistema nervoso centrale (SNC) non pensa nessuno?

E’ lui ad orchestrare in maniera sinergica ed efficace (o almeno si spera) la muscolatura ed è ormai risaputo che sia una limitante nella prestazione più di quanto possa esserlo il muscolo stesso, ne deriva quindi che anche esso è soggetto a stress e ad affaticamento. Durante un’attività muscolare,  il SNC alterna impulsi stimolanti ad altri inibitori. L’allenamento, se protratto,gradualmente sposterà  il piatto della bilancia a favore dei secondi dato che,  mantenendo  un grado di intensità elevato nella contrazione muscolare, la cellula nervosa a fini protettivi, reagirà assumendo uno stato di inibizione, il tutto per difendersi da stimoli eccessivi e quindi potenzialmente pericolosi (Biglad-Ritchie et al. 1983; Hennig & Lomo 1987). E’ dimostrato che una contrazione massimale della durata di 30 secondi, ridurrà la frequenza di impulso dell’80% rispetto a quella iniziale (Marsden et al 1971; Grimby 1992).
Ciò si traduce in una reazione agli stimoli  più lenta e  in decrementi di performance, un monito per tutti coloro che pensano che miglioramenti della forza si attuino solamente con allenamenti portati al cedimento. Essenziale anche la componente recupero. Pause incomplete non garantiscono il mantenimento di buone prestazioni, non garantendo il giusto rilasciamento neuromuscolare tra le serie.

Affaticamento metabolico

Le cause dell’affaticamento metabolico sono molteplici, ma le parole “acido lattico” sono universalmente riconosciute come fonte di dolore ed indolenzimento muscolare, soprattutto per chi si è da poco approcciato al mondo dello sport e al resistance training. In primis una specifica che non credo sia necessario fare: i dolori muscolari successivi all’attività fisica e con successivi intendo quelli che saltan fuori  uno o più giorni dopo, non sono di certo dovuti all’acido lattico.

L’allenamento con resistenze e/o con esercizi ai quali non si è abituati portano generalmente all’insorgenza di dolori muscolari, fenomeno comune tanto nel principiante, quanto nell’avanzato,  che si troverà a gestire carichi di lavoro sempre maggiori per evitare le fasi di stallo. Tali resistenze porteranno a danni muscolari meccanici che peggioreranno poi per le alterazioni metaboliche successive.
E’ risaputo che, soprattutto nella fase eccentrica, i muscoli sono sottoposti a  una grande tensione  che provoca vere e proprie lacerazioni a carico della membrana muscolare e plasmatica, alle miofibrille e allo stiramento del sarcolemma (Friden & Lieber 1992), oltre a generare alte temperature che possono danneggiare componenti strutturali e funzionali della cellula muscolare (Armstrong 1986; Ebbing & Clarkson 1989).

Il dolore che si avverte dalle 24 alle 48 ore dopo l’allenamento, e che può durare anche per un’intera settimana, accompagnato dalla rigidità dei muscoli interessati, non è quindi dovuto all’acido lattico come molti pensano, ma ai danni causati al tessuto stesso e all’accumularsi di ioni calcio, che rilasciano proteasi, causa del deterioramento delle fibre circostanti  (Evans 1987) e a mediatori dell’infiammazione quali potassio, serotonina e istamina (Prentice 1990).
Dato il tempo necessario all’accumularsi di tale sostanze, è normale che il dolore insorga non prima delle 24 ore successive all’allenamento ed è più acuto nella zona di inserzione tra muscoli e tendini, essendo questi ultimi meno estendibili ed elastici (sì, proprio in quel punto vicino all’avambraccio che tanto vi fa male dopo che avete allenato a dovere i bicipiti!)

Ad ogni modo, tornando al principio, esaminiamo il ruolo dell’acido lattico nell’affaticamento muscolare. E’ risaputo che l’accumulo di tale metabolita risulti una limitante nella continuità dell’esercizio (Fox et al 1989), in quanto l’aumento dell’acidità muscolare interferisce con l’attività degli ioni calcio con l’attivazione della troponina che viene meno al suo ruolo nella contrazione muscolare (Fabiato & Fabiato 1978) .

Ad ogni modo più volte abbiamo esaminato il suo ruolo nei processi ipertrofici, quindi è normale che tale metabolita può essere o meno problematico ( o non esserlo per niente!) a seconda delle finalità dell’allenamento. Allo stesso modo si deve prendere in considerazione l’affaticamento conseguente l’esaurimento dei substrati energetici deputati all’attività fisica, in particolar modo delle riserve di ATP/CP e glicogeno, che sono di certo una limitante nella continuità dell’attività(Sahlin 1986). In fondo, come si può pretendere che una macchina senza carburante continui a funzionare? I carboidrati sono sicuramente una fonte primaria da cui il corpo attinge in attività come il body building  e sono vitali per mantenere alti livelli di energia (Conlee 1987), ne deriva uno stato di affaticamento in caso di depauperamento del glicogeno muscolare (Bergstrom 1967), dato che la produzione di ATP sarà sicuramente ridotta e probabilmente non sufficiente per garantire la continuità dello sforzo.

Ristabilimento ATP/CP  3-5 minuti
Ristabilimento glicogeno muscolare 10-48 ore
Rimozione acido lattico da muscoli e sangue 1-2 ore
Ristabilimento vitamine ed enzimi 24 ore
Recupero dopo allenamento di forza intenso (SNC e metabolico) 2-3 ore
Ristabilimento del debito di ossigeno alattacido 5 minuti
Ristabilimento dal debito di ossigeno lattacido 30-60 minuti

Tabella di recupero dopo un allenamento di forza impegnativo Fox et al. 1989

Da: Periodization Training for sports  -Tudor O. Bompa
York University
Human Kinetics