• info@resistancetraining.it

Archivio dei tag potenza

Fortemente veloci, praticamente potenti.

Fortemente veloci, praticamente potenti.

 a cura di Elpidio Amoroso RT Coach

Non vi è alcun dubbio che il canale di informazione dominante la scena mediatica  è il web.  Dal blog spensierato, al materiale didattico universitario, alla posta elettronica certificata, i messaggi che trasmette e riceve la nostra rete non hanno confini e censure.   Tutto lo scibile umano e disumano è semplicemente a portata di click. Nonostante le speranze, non è salva da questa visione post-moderna, la scienza dei pesi. Purtroppo, cosi come in tutte le risorse dalle quali estrarre qualcosa di concreto, c’è bisogno di un duro lavoro di setaccio e ricerca per filtrare ciò che è realmente sostenibile, soprattutto in questo tumulto di tastiere infuocate.  Parafrasando, anche questa faccenda è già storia. Intanto sono molte (forse troppe)  le modalità di approccio allo studio e gli approfondimenti che aleggiano intorno al nostro mondo dei gravi.

A volte appare troppo prolissa, zavorrata da false cattedre e docenti che si erigono  possessori di verità assolute, nello stesso tempo diventa scevra e superficiale quando è raccontata esclusivamente con empirismo e attitudine da praticone.

 

L’obiettivo di questo articolo è quello di rilanciare  riflessioni con estrema sintesi di un argomento  trito e ritrito ma pur sempre complesso e interessante: la forza in relazione alla velocità, nella maggior parte delle sue espressioni.

 

Fig.1

 forza rapida

 

Per alcuni e ovvi motivi, si escluderanno le vicende legate al nozionismo accademico, che se isolate, generano confusione e null’altro. Certamente il lettore di RT, non ha bisogno di rivedere concetti e definizioni, piuttosto si serve di quest’ultimi per approfondire ciò che realizza con l’allenamento. Per non perdere tracce storiche, anche il passato va conosciuto, pertanto non va escluso. Su alcune definizioni trarremo conclusioni cercando di avvicinarci il più possibile a ciò che è il vissuto da allenatori, da atleti, da utenti o appassionati entusiasti di allenarsi con i pesi, in definitiva da RT enthusiast.

 

Nel contesto RT, per introdurre la potenza, da concetti di fisica elementare (materia di cui non voglio abusare, lasciando spazio agli studiosi)  c’è bisogno di fare inevitabilmente riferimento ad una terza grandezza fisica che affascina e induce al boato del pubblico dopo ogni impresa atletica: la velocità. Per alcuni aspetti,  la forza massima assoluta, ci conduce praticamente all’esecuzione di 1RM e può essere considerata per convenzione un’espressione monodimensionale. Per arrivare all’obiettivo, l’esecutore di una prova massimale focalizza l’attenzione solo e soltanto sul gesto di sollevare il peso, senza preoccupazioni ulteriori, se non quelle che consentono di evitare traumi o di massimizzare la tecnica per la minima spesa energetica dal contributo coordinativo. Da un’altra parte, per chi ha come obiettivo la massa muscolare, l’intento assume un carattere bidimensionale, poiché al sollevamento del peso, corrisponde uno specifico numero di ripetizioni. Quindi oltre alla variabile Forza, anche lo spostamento del peso contribuirà a tale produzione. Un’analogia di riferimento potrebbe essere quella di Lavoro=Fxs  come Peso impiegato x Ripetizioni eseguite, il tutto in una modalità relativamente esplosiva, poiché le Unità Motorie (da ora UM) reclutate, nel tempo sono fenotipizzate come FTIIa, patrimonio di fibre per il quale è caratterizzato  maggiormente il bodybuilder, definito dal prof. Carmelo Bosco come soggetto “più lento”  dal punto di vista contrattile. Infine, nella massima espressione di Forza Veloce è la velocità la terza variabile, direttamente correlata al peso sollevato. L’aspetto quindi è di rilevanza  tridimensionale: peso, ripetizioni, velocità dello spostamento.  Si analizza quindi il carattere esplosivo della forza che,  anche se in modo improprio, si può definire come la capacità di esprimere elevati gradienti di forza nel minor tempo possibile, per poter imprimere alla resistenza da spostare (Lavoro = fxs) la maggiore velocità possibile. Da questo si deduce che espressione di forza esplosiva coincide con la massima potenza muscolare, cioè minimo tempo impiegato per compiere un lavoro (W= L\T). La massima potenza muscolare generalmente si ottiene con sviluppi di forza pari al 30-40% della forza massima e con velocità di accorciamento pari al 35-45% di quella massima (1).

Fig.2forza

Le definizioni però si maneggiano con cautela, altrimenti si rischia di mietere vittime della confusione.  Pertanto,  passando per la letteratura scientifica del prof. Bosco, si potrebbe proseguire ancore con  “la forza con la quale si tiene conto della capacità di modulare la velocità con cui spostare il carico è detta FDM forza dinamica massima”.  Oltre questo carico ci si sposta verso la forza massima, fino ad arrivare alla massima isometrica dove la velocità è 0 ed è nulla anche la potenza. Se P= F x v , ovviamente la potenza diminuisce al diminuire di v. Ma di cosa si ha bisogno per allenamento quando tra gli obiettivi c’è la potenza? La risposta è intuibile nel famoso grafico di Hill che relaziona la velocità della contrazione muscolare con la forza espressa.

Fig. 3

 forza2

 

La massima potenza viene erogata quando il muscolo sposta una Resistenza di circa il 40% del valore massimo per un determinato muscolo ad una velocità di circa il 40% di quella massima possibile; di contro la velocità massima è sviluppata dal muscolo quando esso è privo di carico aggiunto come avviene nella produzione di forza esplosiva, mentre la forza massima si raggiunge quando la velocità  è nulla nonostante la tensione che si sviluppa nelle fibre sia massima, come avviene nella produzione di quella che comunemente viene chiamata forza isometrica massima; in questi casi la potenza sviluppata dal muscolo sarà minima. Nel caso della forza muscolare da applicare in uno squat per esempio, l’entità della R stabilisce un reclutamento di UM , che parte da quelle di tipo I (legge di Henneman) fino a reclutarle tutte, oltre alle cosiddette lente di tipo I anche le IIa e IIx in caso di Resistenza maggiore quindi di velocità e risposta contrattile maggiore. La forza in gioco è strettamente correlata al suo prodotto con la velocità che è proprio la potenza!  Se aumenta la forza da applicare per vincere il carico (meglio definito precedentemente Resistenza), la velocità si abbassa in funzione dell’entità della R stessa. Si arriva a 0 quando non si è in grado di spostare quella R, ed è questo l’esempio della forza isometrica, ovvero a potenza nulla. Se la resistenza diventa più bassa, si potrebbe applicare una forza che sposta con maggiore velocità (forza veloce) quindi aumenterebbe la potenza erogata, F x v oppure F x s\v ancora sostituibile con L\T.

 

Nella realtà del bodybuilding la variabile velocità è secondaria rispetto all’importanza che assume in altri sport. Questo indica, grosso modo, che il range di lavoro dell’ipertrofia è dal limite più alto della FDM (Forza Dinamica Massima) in su, quindi a partire dal 70-75% (2).

Fig.4

forza3

I movimenti a cui si riferiva il prof. Bosco sono prevalentemente catene cinetiche chiuse e semichiuse. Per i puristi, è intuibile che non si riferisce a movimenti come la flessione del gomito con per i bicipiti o le croci per i pettorali.  Pertanto, se in una catena motoria, chiusa o semichiusa, la R viene distribuita in tutte le articolazioni , diversamente succede  in quelle aperte dove il valore articolare si riduce.  Un esempio potrebbe essere quello della catena di spinta del tronco e degli arti superiori come nella distensione su panca con il bilanciere.  Il tricipite è un forte ausiliario, mentre nella stessa panca, ma con manubri,  lavora poco, se non pochissimo. La forza dipende dalla quantità di massa (sezione trasversa) muscolare e dal numero ponti acto-miosinici disponibili. C’è da aggiungere che  quando la velocità aumenta, la forza diminuisce non solo perché il contributo delle tipo I viene meno ma anche perché, nelle fibre di tipo II, la stessa velocità non permette di formare tutti i ponti disponibili. Una volta attivate tutte le UM, sarà la frequenza di scarica ad aumentare. Ritornando al tricipite, esso si trova costretto ad anticipare la frequenza di scarica rispetto al pettorale che essendo più grande pretende la stessa forza dal suo ausiliario. Per alcuni esecutori, che hanno alti obiettivi come la potenza, questa faccenda può interessare meno, ma è facile intuire che per parlare di preparazione atletica, prescindendo dagli effetti dell’ipertrofia, i movimenti a catena chiusa hanno una valida ragione di esistere.

Per ritornare alla risposta gerarchica delle UM, essa  è regolata sulle richieste del movimento da realizzare (progetto motorio)  in relazione al carico (R) da spostare e alla condizione iniziale del muscolo che deve contrarsi. L’allenamento porta a un’integrazione temporale fra attività delle lente e delle veloci. I modelli di reclutamento come quello di Hennaman, sulla base del “principio della dimensione”, prevedono che le fibre rosse sono più sensibili agli stimoli afferenti al muscolo e che la loro attivazione sia presente anche a bassa frequenza. Resta da indagare o approfondire magari in altre sedi, che le fibre rosse (lente) non si possono escludere e che per un innesco migliore dell’attività delle fibre bianche è necessario un elevato stato di attivazione delle rosse! L’interazione fra l’attività delle diverse tipologie di fibre è una questione cruciale, senza questa condizione il sistema nervoso centrale in correlazione con il sistema somatosensoriale si accollerebbe di tutto quello che fanno le fibre rosse e bianche, non potendo seguire tutte le variazioni di sia dal punto di vista elastico che cinetico. In merito a ciò che succede in allenamento, c’è sicuramente da considerare il ruolo delle fibre intermedie IIa, ricordando i bodybuilders. L’allenamento sulla potenza secondo il prof. Bosco rimane valido, a patto che se ne comprenda il senso. Oltre alcune percentuali di 1RM, il lavoro è portato a termine aumentando la frequenza di scarica che costituisce, in effetti, uno stimolo forte al SNC, da qui l’idea di Bosco di fermarsi al calo della velocità per separare allenamento nervoso da quello metabolico (3).

 

ALLENARE LA POTENZA

Quest’obiettivo è tipicamente il più richiesto durante tutta la periodizzazione annuale, quando gli atleti sono intenti a ricercare il loro picco di condizione fisica. La capacità per produrre potenza muscolare, è associata con fattori come un alto livello di forza assoluta e movimenti in velocità. Per gli atleti che già possiedono una tale capacità condizionale, durante gli esercizi con resistenze, ci sono fattori chiave che possono permettere un ulteriore sviluppo di potenza. Eseguire le serie al cedimento, potrebbe ostacolare lo sviluppo della potenza perché si riduce la velocità dei movimenti, pertanto interrompere la serie prima del cedimento o ancora prima di perdere velocità con quel R, si rivela la strategia migliore.

Una tradizionale serie Full-RM (tutte le ripetizione possibili, stabilito un certo valore di R) è svantaggiosa in termini di guadagno sulla potenza delle ripetizioni.

 

La pianificazione RT per incrementare la potenza si basa su un approccio che considera l’interruzione della serie, prima del cedimento.

 

1° esempio:  ripetizioni singole, ognuna delle quali intervallate da 20 “ fino a completarne 6. Nel linguaggio più appropriato, sono indicate come 1/6RM, in altre parole 1 ripetizione eseguita, sulla base delle possibili 6 ottenute in continuum.

 

2° esempio:  ripetizioni doppie, 3 serie eseguite con 50” di riposo. 2/6RM

 

3° esempio:   ripetizioni triple, 2 serie con 100” di riposo. 3/6RM

 

In tutti i casi, la variabile chiave è la velocità. Appare ovvio che non appena questa si abbassa, l’allenamento per la potenza perde il suo beneficio.

Gli esempi elencati, possono produrre significativamente un grande guadagno di potenza, rispetto a chi preferirebbe eseguire le reps in continuum e arrivare al cedimento con 6/6RM (Repetition Maximum.)

Il metodo che prevede prestazioni Full RM (tutte quelle eseguibili data un nRM, in questo caso 6RM) non è indicato per gli allenamenti mirati alla potenza. Inoltre, poiché la maggior parte degli sport basati sulle condizioni anaerobiche (football, rugby, pesistica olimpica) richiedono impegni di forza esplosiva veloce, il trasferimento di prestazioni migliori si verifica maggiormente nella tipologia di allenamento, dove le ripetizioni ottenute con un  certo valore di  RM sono divise.

La ricerca suggerisce che se l’obiettivo è migliorare la potenza, la serie deve terminare prima di raggiungere lo sfinimento. Per esempio quando si esegue la distensione su panca con 75%1RM, la serie dovrebbe terminare approssimativamente prima di 3 -5 ripetizioni. Come questi risultati si riferiscano ad altri esercizi comunemente prescritti nella Pesistica Olimpica, richiede un successivo approfondimento ma esiste probabilmente la stessa relazione. Per questa categoria di atleti, occorrerebbe una vasta bibliografia da rispolverare, magari dedicando un altro articolo. Ciò che emerge più di ogni altro loro aspetto, è sicuramente la capacità di trasferire con questa tipologia di allenamento straordinarie doti atletiche di potenza nel salto (4).  Ecco  l’intuito per le nuove (ma non nuovissime) frontiere del potenziamento atletico per sport di squadra e individuali che si basano sulla Pesistica Olimpica Adattata. Non è da sottovalutare inoltre la specifica fenotipizzazione di UM che  caratterizza i “WeightLifter”.  Statisticamente, e non solo, sono classificarti a vertici tra gli atleti più “veloci”.

Fig. 5

jump

In conclusione, un allenatore deve determinare specificamente, quante ripetizioni sono possibili, data una certa percentuale di R, in seguito egli regola quelle da eseguire per le serie. Inoltre, le risposte ormonali a seguito di allenamenti condotti a cedimento, non sono certamente rassicuranti. In effetti, per aspettarsi risposte minime di aumento di testosterone endogeno, le serie devono essere eseguite con estrema forza esplosiva, sicuramente non al cedimento.  Il motivo per il quale si abbassano le reps ma non le Resistenze è per non compromettere il reclutamento di UM, principalmente. Per giunta, proseguire verso il cedimento in tutte le sedute di allenamento induce a una diminuzione della secrezione di alcuni ormoni. Tuttavia, la stimolazione ormonale è difficile da ottenere, pertanto, con una corretta programmazione, si placa quantomeno il suo declino.

 

https://www.youtube.com/watch?v=wZeV6W1VEoM

 

  1. Manno Renato.  Allenamento della forza. Società Stampa Sportiva Roma, 47-51, 1981.
  2. Bosco Carmelo. La forza muscolare. Società Stampa Sportiva Roma, 84-94. 1997
  3. Massaroni  Filippo.  Appunti sulla presentazione dell’ Ebook  -Teoria e Pratica del Resistance Training – Rimini Wellness 2014
  4. Training to Failure and Beyond in Mainstream Resistance Exercise Programs Willardson, Jeffrey M PhD, CSCS; Norton, Layne; Wilson, Gabriel MS, CSCS – Strength & Conditioning Journal: June 2010 – Volume 32 – Issue 3 – pp 21-29

CREATINA : QUANTITÀ E DOSAGGI OTTIMALI

Dott. Trotta Giorgio

Il tema degli integratori alimentari in questi anni è diventato sempre più comune e popolare nella nostra società. Negli ultimi 20 anni abbiamo assistito all’esplosione industriale di detti supplementi per soddisfare, in particolare, gli utilizzatori che praticano attività sportive.
Ciò non ci deve affatto sorprendere poiché per anni marchi d’integratori, pubblicità ad hoc e psudo-trainer hanno attribuito all’uso di integratori il raggiungimento ed il miglioramento di prestazioni di qualsiasi obiettivo del training (per esempio la perdita di peso, crescita muscolare ecc.).
Numerosi nutrizionisti sportivi e scienziati dello sport sostengono però che la maggior parte degli integratori sono da considerarsi un notevole dispendio economico in quanto non sono idonei a fornire alcun aiuto ergogenico di perfomance di più di quanto arreca una dieta sana ed equilibrata.
Tuttavia nel tempo alcuni integratori sembrano aver resistito a tale critica: La creatina è uno di quei pochi.
In virtù delle sua vendita possiamo considerare che ad oggi la creatina è l’integratore alimentare più popolare tra gli atleti di forza, basta considerare che una recente indagine ha indicato che il 37,5% degli studenti che praticano sport fanno o hanno fatto uso di creatina monoidrato.

UN PO’ DI STORIA…

Negli anni 70 la creatina monoidrato era utilizzata unicamente per scopi terapeutici.
Negli Stati Uniti, nei primi anni 90, ebbe inizio l’assunzione di creatina monoidrato da parte degli sportivi e dal 1993 venne introdotta come integratore alimentare per il pubblico.
Le affermazioni aneddotiche iniziali ruotavano intorno alla capacità della creatina di poter permettere il miglioramento dei tempi di recupero negli esercizi anaerobici, l’incremento della forza e l’aumento delle dimensioni muscolari.Le ricerche condotte negli anni successivi hanno confermato che l’adeguata somministrazione di creatina permette tali caratteristiche.
Attualmente la maggior parte delle ricerche eseguite confermano che la supplementazione di creatina apporta maggiori benefici a coloro che sono interessati a prestazioni ad alta intensità e di breve durata. (Esempi di tali attività possono essere un massimale, una raffica di pugni nella box, una volata di 100 m ecc…)

massimale

LE BASI

La comprensione dei processi per i quali la creatina apporta detti benefici richiede la conoscenza teorica di base di ciò che rende possibile qualsiasi movimento che compie l’uomo. Il movimento umano è reso possibile grazie ad una specifica molecola, l’adenosina trifosfato (ATP), che è capace di accumulare e rilasciare l’energia necessaria. ATPLa  ATP  risulta essere, quindi,  il carburante che alimenta il motore umano.
Una delle finalità principali dell’assunzione di cibo (alimenti che contengono grassi, carboidrati e proteine) da parte del nostro organismo è proprio la produzione di ATP. Il “segreto” dell’ ATP va ricercato nel legame chimico ad alta energia posizionato tra il secondo e il terzo gruppo fosfato della sua molecola. Quando questo legame si rompe viene rilasciata l’energia che indirettamente  determina la contrazione muscolare. Il risultato del processo è la formazione di fosfato inorganico (Pi) e adenosina difosfato (ADP) che  ha una resa energetica molto più bassa dell’ ATP. Quando un fibra muscolare è in condizioni di riposo le richieste di ATP sono minime ma nel momento in cui viene stimolata a contrarsi le richieste aumentano immediatamente. Il corpo ha sufficiente ATP immagazzinata per sostenere solo per alcuni secondi un lavoro di elevata intensità, ma poi deve contare su una rapida re-sintesi di ATP per mantenere elevata la potenza contrattile del muscolo.Per assicurare la disponibilità di ATP necessaria, i muscoli si affidano ad una riserva di fosfati ad alta energia immediatamente disponibili, presenti sotto forma di un composto chiamato creatinfostato. Questa molecola fornisce il fosfato all’ ADP per la produzione di ATP. La reazione (reversibile) di ADP in ATP è catalizzata dall’ enzima creatin-chinasi. Questo processo viene effettuato dal muscolo nei periodi di riposo tra le serie. Poiché le scorte di creatin-fostato sono limitate questo processo produce ATP solo per un periodo di tempo breve ma può essere sufficiente perché nel frattempo si attivano altre reazioni metaboliche che forniscono ATP.
L’ integratore a base di creatina, quindi, permette la produzione ed immagazzinamento di creatin-fosfato. Inoltre esso stimola la sintesi di alcune proteine quali actina e miosina costituenti la parte contrattile del muscolo. La Creatina è un derivato aminoacidico, sintetizzata dall’arginina, glicina e metionina ed è prodotto dal corpo nel fegato, nei reni e nel pancreas. Una volta sintetizzata dagli organi suddetti il 95% della creatina viene immagazzinata nei muscoli scheletrici ed il restante 5% viene distribuita tra cuore, cervello e testicoli. La molecola inoltre viene ottenuta nel tratto digestivo a partire dai costituenti della dieta. Il 60% di tale composto viene poi trasportato nel sangue fino al tessuto muscolare, dove si ha la formazione in fosfocreatina, una molecola ricca di energia.Il fabbisogno giornaliero di creatina di una persona di peso 70 kg è di circa 2 g. Il corpo ne sintetizza circa la metà, la quantità rimanente è apportata dalla dieta. La carne ed il pesce sono le migliori fonti naturali. Ad esempio l’apporto di 1 g di creatina può essere assicurato da 250 g di carne cruda.

CREATINA E PERFOMANCE FISICA

Agli inizi del 1900, in Russia, un gruppo di scienziati ha scoperto che l’ uso supplementare di creatina migliora alcuni parametri della prestazione. Da qui è nata l’ idea che più creatina si assume più il muscolo tende a immagazzinarla e più creatin-fosfato è disponibile per la rapida produzione di ATP necessaria per le attività ad alta intensità. Molti studi hanno però dimostrato che la supplementazione di creatina fa aumentare il contenuto di fosfati nel muscolo solo fino ad un massimo del 20-30% della creatina assunta.creatinaLa questione importate da capire è in quali attività fisiche sia utile assumere la creatina per poter indurre più benefici.
Le attività che possono aver più necessità dell’integrazione di tale supplemento riguardano gli sport prevalentemente anaerobici ad alta intesità e di breve durata (prestazioni minori hai 30 secondi) e con potenze abbastanza elevate. L’integrazione di creatina aumenterà le quantità di deposito ed i livelli circolanti, cosi l’ atleta che esegue esercizi ad alta intensità avrà creatina “extra” prontamente disponibile in modo da poter incrementare il lavoro e recuperare più rapidamente. Al contrario, sono gli sport di intensità media / bassa e di lunga durata (più di un minuto / due) nei quali i processi aerobici non prediligono la produzione di ATP e dove la re-sintesi rapida di ATP non è fattore limitante della prestazione. Molti studi infatti hanno dimostrato che, in queste attività, la supplementazione di creatina non apporta alcun beneficio alla qualità delle prestazioni.

QUANTITÀ  E DOSI OTTIMALI

In uno studio eseguito dai ricercatori dell’ University of Western Australia è stata valuta l’efficacia di supplementazione di 20 g giornalieri di Cr in tre differenti modalità di somministrazione e di mantenimento della concentrazione di Cr nei muscoli.
Le tre modalità di somministrazione e dosaggio della Cr sono stati:

1. Cr 20 g al giorno somministrata 4 volte x 5 grammi al giorno e per cinque giorni

2. Cr (stesso dosaggio di Cr 20 – 4 v x 5 g -) + 2 soluzione in acqua di glucosio al giorno Ai soggetti è stata somministrato 30 minuti dopo la seconda e la quarta dose giornaliera di creatina un grammo di glucosio / kg peso corporeo sciolti in 500 ml d’acqua

3. Cr (20g – 4v x 5 g – ) + esercizio (l’ingestione della seconda dose di Cr è avvenuta dopo un’ora di ciclismo)

Le dosi di mantenimento sperimentata sono state le seguenti:

1. Due grammi di Cr al giorno per sei settimane

2. Cinque grammi di Cr al giorno per sei settimane

3. Nessun g di Cr per sei settimane

E’ stato riscontrato che la concentrazione di Cr nei muscoli (TCR) in seguito alle modalità di somministrazione del protocollo 2 (Cr + glucosio) è risultata incrementata del + 25% mentre gli incrementi riscontrati in seguito ai protocolli 1 (Cr) e 3 (Cr + esercizio) sono stati rispettivamente del 18 % e del 16%. E’ da notare che non ci sono enormi differenze di risultato tra protocollo 1 e protocollo 3.creatina-micronizzata-monoidrata
Gli immagazzinamenti di fosfo-creatina sono stati significativamente elevati nel protocollo 2 (glucosio + Cr): + 8% e 3 (esercizio + Cr) : + 9% .
Dopo la fase di mantenimento delle sei settimane si è riscontrato che i dosaggi di 2 grammi e 5 grammi al giorno di Cr hanno prodotto equivalenti concentrazioni TCR nei muscoli e non hanno permesso la diminuzione delle TCR intramuscolari ottenute in seguito ai protocolli 1, 2 e 3.
È da evidenziare che, dopo sei settimane di non assunzione di Cr, le concentrazioni di TCR nei muscoli non si sono abbassate ai valori riscontrati precedentemente alle somministrazioni eseguite con i protocolli 1, 2 e 3.
Recenti studi hanno scoperto, inoltre, che una dose di 2-4 g al giorno di creatina assunta per un periodo di 30 giorni comporta lo stesso incremento di Cr nei muscoli che si ottiene in seguito alle modalità di somministrazione su riportate.
Quindi se l’atleta non ha un immediato bisogno di incrementare l’immagazzinamento di Cr può anche non adottare detti protocolli di carico e mantenimento .E’ importate evidenziare anche che la quantità di Cr assorbita nei muscoli è principalmente influenzata dal suo contenuto iniziale: soggetti con livelli di creatina nei muscoli molto bassi assorbono la maggior parte della Cr somministrata.

L’assunzione di creatina monoidrato, invece, sembra essere meno efficace quando:

 si assumono 20 g al giorno per meno di 5 giorni

 dosi basse (1-2 g al giorno) sono somministrate senza una iniziale somministrazione di dosi più elevate

 tra le serie si recupera in tempi troppo corti o troppo lunghi

Infine occorre tener conto della specificità del soggetto: anche se molti studi indicano che la supplementazione di creatina monoidrato può migliorare le prestazioni non necessariamente ciò ha valore ergogenico per tutti.

EFFETTI COLLATERALI

L’unico effetto collaterale riportato dagli studi è l’aumento di peso riscontrato in soggetti che non si allenano regolarmente ed in alcuni atleti d’elite.
Poiché la creatina è un aminoacido alcuni ritengono che la supplementazione di creatina monoidrato possa influenzare negativamente la funzione renale e/o epatica. Tuttavia, nessuno studio clinico ha segnalato un significativo innalzamento dei marker di funzionalità renale o di enzimi epatici.
Comunque nessuno studio ha riportato che la supplementazione di creatina monoidrato abbia provocato effetti negativi su atleti che si dedicano a sport e fitness a livello non agonistico. Inoltre nessuno studio scientifico ha segnalato che l’integrazione di creatina possa favorire una maggiore incidenza di stiramenti o contratture.

CONCLUSIONE

Ad oggi più di 500 studi su questo argomento hanno verificato che la supplementazione di creatina può :metabolismo-muscolare-e-integrazione-di-creatina

 aumentare la potenza massima e/o forza del 5 – 15%

 aumentare il lavoro eseguito durante una serie del 5-15%

 migliorare il recupero tra le serie

 favorire l’aumento del massimale

 fare aumentare la lunghezza di salto

 migliorare la performance di scatto dai 6 ai 30 sec

 migliorare la prestazione negli scatti ripetuti

Questi studi hanno inoltre accertato che l’uso di creatina monoidrato permette guadagni di massa muscolare e strength.
In definitiva per il raggiungimento di un obiettivo a breve termine si consiglia, per 5 giorni, l’assunzione di 5g di creatina per 4 volte al giorno (20g per die) ingeriti 30 minuti prima di pasti aventi alto contenuto di carboidrati. Si raccomanda la somministrazione prima del pasto pre work-out. Assumere nel periodo di mantenimento 5 g nelle 6 settimane successive. Nel periodo di carico può aumentare il contenuto totale di creatina dal 10 – 30% e riserve di fosfocreatina dal 10 – 40%.Se l’atleta, invece, non ha un immediato bisogno di incrementare l’immagazzinamento di creatina può anche non adottare questo tipo di protocollo (carico e mantenimento) e assumere 3-4 g di creatina per 60 giorni. Inoltre ricordarsi che quando si assumono integratori a base di creatina si raccomanda di bere molto al fine di mantenere una buona idratazione.

 

BIBLIOGRAFIA

1. Willoughby DS, Rosene J. (2001). Eff ects of oral creatine and resistance training on myosin heavy chain expression. Medicine & Science in Sports & Exercise, 33(10):1674 – 1681.
2. Tipton KD, Rasmussen BB, Miller SL, Wolf SE, Owens-Stovall SK, Petrini BE, Wolfe RR. (2001). Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American Journal of Physiology. Endocrinology and Metabolism. 281(2) E197 – 206.
3. Jose Antonio, PhD, CSCS, Sports Nutrition and Supplementation Muscle Building, Strategies, National Strength and Conditioning Association Bridging the gap between science and application,Special Report 2006.
4. Dr. Brian Gosa,PharmD Farmacista,Alabama,Dr. Paul D. Walker, PharmD, Harrison, CREATINA ,Obiettivo farmacista, medical education italia (2008)
5. Douglas Kalman MS, RD, CCRC, A Closer Look at Creatine Monohydrate, Nutrition, Performance Training Journal NSCA’S , 3 sempteber 2004
6. Kreider RB. (1998). Creatine supplementation: analysis of ergogenic value, medical safety and concerns. Jounal of Exercise Physiology Online, 1:1.
7. Kreider RB. (2003). Effects of creatine supplementation on performance and training adaptations. Molecular and Cellular Biochemistry, 244:89 – 94.
8. Joseph M. Warpeha MA, CSCS,*D, NSCA-CPT,*D, Creatine Explained, NASCA’S Perfomance Training Journal Winter sport, volume 5 , 2006
9. Volek JS, Rawson ES. (2004). Scientifi c Basis and Practical Aspects of Creatine Supplementation for Athletes.Nutrition. 20:609-614.
10. Cindy L.Stanfield , William J.German , Fisiologia Terza Edizione , Edises 2010